Smooth extensions and quantized Fréchet algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voiculescu Theorem, Sobolev Lemma, and Extensions of Smooth Algebras

We present the analytic foundation of a unified B-D-F extension functor Extr on the category of noncommutative smooth algebras, for any Fréchet operator ideal ^ . Combining the techniques devised by Arveson and Voiculescu, we generalize Voiculescu's theorem to smooth algebras and Fréchet operator ideals. A key notion involved is r-smoothness, which is verified for the algebras of smooth functio...

متن کامل

Second Quantized Frobenius Algebras

We show that given a Frobenius algebra there is a unique notion of its second quantization, which is the sum over all symmetric group quotients of n–th tensor powers, where the quotients are given by symmetric group twisted Frobenius algebras. To this end, we consider the setting of Frobenius algebras given by functors from geometric categories whose objects are endowed with geometric group act...

متن کامل

Quantized Affine Algebras and Crystals with Head

Motivated by the work of Nakayashiki on the inhomogeneous vertex models of 6-vertex type, we introduce the notion of crystals with head. We show that the tensor product of the highest weight crystal B(λ) of level k and the perfect crystal Bl of level l is isomorphic to the tensor product of the perfect crystal Bl−k of level l − k and the highest weight crystal B(λ′) of level k.

متن کامل

Quantized Symplectic Actions and W -algebras

With a nilpotent element in a semisimple Lie algebra g one associates a finitely generated associative algebra W called a W -algebra of finite type. This algebra is obtained from the universal enveloping algebra U(g) by a certain Hamiltonian reduction. We observe that W is the invariant algebra for an action of a reductive group G with Lie algebra g on a quantized symplectic affine variety and ...

متن کامل

Quantized Matrix Algebras and Quantum Seeds

We determine explicit quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centers and block diagonal forms of these algebras. In the case where q is an arbitrary root of unity, this further determines the degrees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1995

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1995.169.353